تحلیل احساسات برای پیش¬بینی بازار بورس با شبکه عصبی ژرف: مطالعه موردی برای پایگاه داده سهام شرکت¬های بین-المللی
محورهای موضوعی :حکیمه منصور 1 , سعیده ممتازی 2 , کامران لایقی 3
1 - دانشجو
2 - استادیار
3 - دانشگاه آزاد
کلید واژه: تحلیل احساسات, شبکه عصبی ژرف, مدل¬های شبکه عصبی پیچشی, شبکه حافظه کوتاه-مدت بلند, شبکه اقتصاد مالی. بازار سهام,
چکیده مقاله :
امروزه تحلیل احساسات به عنوان یکی از ارکان اصلی در زمینه های مختلف از جمله مدیریت مالی، بازاریابی، پیش بینی تغییرات اقتصادی درکشورهای مختلف بکار گرفته می شود. به منظور ساخت یک تحلیل گر احساسات بر مبنای نظرات کاربران در رسانه های اجتماعی، بعد از استخراج ویژگی های مهم بین کلمات توسط شبکه پیچشی، از شبکه حافظه کوتاه-مدت بلند استفاده می کنیم تا رابطه نهفته در دنبالـه ای از کلمات را کشف و ویژگی های مهم متن را استخراج نماییم. با کشف ویژگی های استخراج شده جدید توسط شبکه برگشتی با حافظه کوتاه-مدت بلند، توانایی مدل پیشنهادی در طبقه بندی ارزش سهام شرکت ها افزایش می یابد و در نهایت به پیش بینی سهام بورس در روز بعد براساس تحلیل احساسات می پردازیم. اﯾﻦ ﭘﮋوﻫﺶ ﺑﺮ اﺳﺎس دادهﻫﺎی ﻣﻘﺎﻟﻪ اﻧﮕﻮﯾﺎن و همکارانش اﻧﺠﺎم ﮔﺮﻓﺘﻪ اﺳﺖ و تنها از اﻃﻼﻋﺎت احساسی ﻣﺮدم در شبکه-ﻫﺎی اجتماعی ﺑﺮای ﭘﯿﺶبینی ﺳﻬﺎم اﺳﺘﻔﺎده می کند. با توجه به اینکه هر یک از پیـام های کاربـران را در 5 کلاس های احساسی طبقه بندی می کنیم، بنابراین این مدل ارزش سهام روز بعد را به دو حالت بالا یا پایین بودن آن می تواند پیش بینی کند. ساختار پیشنهادی شامل 21 لایه شبکه عصبی ژرف و متشکل از شبکه های پیچشی و حافظه کوتاه-مدت بلند است که برای پیش بینی سهام بورس 18 شرکت پیاده سازی شده است. اگرچه برخی مدل های ارائه شده قبل، از تحلیل احساسات به منظور پیش بینی بازار سرمایه بهره گرفته اند، اما از روش های ترکیبی و پیشرفته در شبکه های ژرف با میزان دقت پیش بینی بالا بهره نبرده اند. سنجش نتایج روش پیشنهادی با دیگر مطالعات نشان داده که عملکرد روش پیشنهادی در مقایسه با 8 روش دیگر، بطور قابل ملاحظه ای خوب بوده و در معیار ارزیابی صحت در پیشبینی روزانه سهام با بهبود 8/19 درصدی نسبت به مدل شبکه پیچشی ژرف، 5/24 درصدی نسبت به مدل پیشنهادی انگویان و همکاران (2015) و 94/23 درصدی نسبت به مدل پیشنهادی درخشان و همکاران (2019) از روشهای رقیب پیشی بگیرد.
Emotional analysis is used as one of the main pillars in various fields such as financial management, marketing and economic changes forecasting in different countries. In order to build an emotion analyzer based on users' opinions on social media, after extracting important features between words by convolutional layers, we use LSTM layers to establish the relationship behind the sequence of words and extract the important features of the text. With discovery of new features extracted by LSTM, the ability of the proposed model to classify the stock values of companies increases. This article is based on the data of Nguyen et al. (2015) and uses only the emotional information of people in social networks to predict stocks. Given that we categorize each user's message into one of the emotional classes "Strong Buy", "Buy", "Hold", "Sell", "Strong Sell", this model can predict the stock value of the next day, whether it will be high or low. The proposed structure consisted of 21 layers of neural networks consisting of convolutional neural networks and long short-term memory network. These networks were implemented to predict the stock markets of 18 companies. Although some of the previously presented models have used for emotion analysis to predict the capital markets, the advanced hybrid methods have not been performed in deep networks with a good forecasting accuracy. The results were compared with 8 baseline methods and indicate that the performance of the proposed method is significantly better than other baselines. For daily forecasts of stocks changes, it resulted in 19.80% improvement in the prediction accuracy, compared with the deep CNN, and 24.50% and 23.94% improvement compared with the models developed by Nguyen et al. (2015) and Derakhshan et al. (2019), respectively.