روش ترکیبی جدیدی مبتنی بر الگوریتم¬های هوشمند جهت تشخیص نفوذ در SDN-IoT
محورهای موضوعی : electrical and computer engineering
ذکریا رئیسی
1
,
فضلالله ادیبنیا
2
,
مهدی یزدیان دهکردی
3
1 - دانشکده مهندسی کامپیوتر، دانشگاه یزد، ایران
2 - دانشکده مهندسی کامپیوتر، دانشگاه یزد، ایران
3 - دانشکده مهندسی کامپیوتر، دانشگاه یزد، ایران
کلید واژه: شبکههای نرمافزارمحور, الگوریتمهای هوشمند, اینترنت اشیا, تشخیص نفوذ, یادگیری ماشین,
چکیده مقاله :
در سالهای اخیر، کاربرد اینترنت اشیا در جوامع بهطور گستردهای رشد یافته و از طرفی، فناوري جدیدي به نام شبکههاي نرمافزارمحور جهت حل چالشهاي اینترنت اشیا پیشنهاد شده است. چالشهای موجود در این شبکههای نرمافزارمحور و اینترنت اشیا موجب گردیده که امنیت SDN-IoT به یکی از نگرانیهای مهم این شبکهها تبدیل شود. از طرف دیگر، الگوریتمهاي هوشمند فرصتی بوده که بهکارگیری آنها در موارد متعددی از جمله امنیت و تشخیص نفوذ، موجب پیشرفت چشمگیري شده است. البته سیستمهای تشخیص نفوذ جهت محیط SDN-IoT، همچنان با چالش نرخ هشدار غلط بالا مواجه هستند. در این مقاله یک روش ترکیبی جدید مبتنی بر الگوریتمهای هوشمند پیشنهاد شده که جهت دسترسی به نتایج خوبی در زمینه تشخیص نفوذ، الگوریتمهای نظارتی دروازه بازگشتی مکرر و طبقهبند غیرنظارتی -k میانگین را ادغام میکند. نتایج شبیهسازی نشان میدهند که روش پیشنهادی با بهرهگیری مزایای هر کدام از الگوریتمهای ادغامشده و پوشش معایب یکدیگر، نسبت به روشهاي دیگر مانند روش Hamza داراي دقت بیشتری و بالاخص نرخ هشدار غلط کمتري است. همچنین روش پیشنهادی توانسته نرخ هشدار غلط را به 1/1% کاهش داده و دقت را در حدود 99% حفظ کند.
In recent years, the use of Internet of Things in societies has grown widely. On the other hand, a new technology called Software Defined Networks has been proposed to solve the challenges of the Internet of Things. The security problems in these Software Defined Networks and the Internet of Things have made SDN-IoT security one of the most important concerns. On the other hand, the use of intelligent algorithms has been an opportunity that these algorithms have been able to make significant progress in various cases such as image processing and disease diagnosis. Of course, intrusion detection systems for SDN-IoT environment still face the problem of high false alarm rate and low accuracy. In this article, a new hybrid method based on intelligent algorithms is proposed. The proposed method integrates the monitoring algorithms of frequent return gate and unsupervised k-means classifier in order to obtain suitable results in the field of intrusion detection. The simulation results show that the proposed method, by using the advantages of each of the integrated algorithms and covering each other's disadvantages, has more accuracy and a lower false alarm rate than other methods such as the Hamza method. Also, the proposed method has been able to reduce the false alarm rate to 1.1% and maintain the accuracy at around 99%.