بهبود تخصیص منابع در محاسبات لبه موبایل با استفاده از الگوریتم بهینهسازی ازدحام ذرات و گرگ خاکستری
محورهای موضوعی : ICT
سیدابراهیم دشتی
1
,
سعید شب بویی
2
1 - هیات علمی
2 - دانشگاه آزاد اسلامی
کلید واژه: بهبود تخصیص منابع, محاسبات لبه موبایل, الگوریتم بهینهسازی ازدحام ذرات, الگوریتم گرک خاکستری,
چکیده مقاله :
محاسبات لبه موبایل تجربه کاربران نهایی را برای دستیابی به خدمات مناسب و کیفیت خدمات بهبود میدهد. در این مقاله مسئله بهبود تخصیص منابع، هنگام بارگیری وظایف، براساس دستگاههای تلفن همراه به سرورهای لبه در سیستمهای محاسباتی بررسی میشود. برخی وظایف به صورت محلی و برخی به سرورهای لبه بارگذاری و پردازش میشوند. مسئله اصلی این است که وظایف تخلیهشده برای ماشینهای مجازی در شبکههای محاسباتی بصورت مناسب زمانبندی شوند تا زمان محاسبات، هزینه خدمات، اتلاف شبکههای محاسباتی و حداکثر ارتباط یک کار با شبکه به حداقل برسد. در این مقاله الگوریتم ترکیبی چند هدفه ازدحام ذرات و گرگ خاکستری برای مدیریت تخصیص منابع و زمانبندی وظایف برای دستیابی به یک نتیجه بهینه در شبکههای محاسبات لبه معرفی شد. جست و جوی محلی در الگوریتم ازدحام ذرات نتایج مناسبی را در مسئله دارد اما باعث از بین رفتن بهینههای سراسری خواهد شد، بنابراین در این مسئله به منظور بهبود مدل، از الگوریتم گرگ خاکستری به عنوان پایه اصلی الگوریتم پیشنهادی استفاده شد، در الگوریتم گرگ خاکستری به دلیل رویکرد گرافی مسئله، مجموعه جست و جوهای سراسری به جواب بهینهای خواهد رسید، بنابراین با ترکیب این توابع سعی در بهبود شرایط عملیاتی دو الگوریتم برای اهداف مورد نظر مساله شد. به منظور ایجاد شبکه در این پژوهش از پارامترهای ایجاد شبکه در مقاله پایه استفاده شده است و در شبیهسازی از مجموعه داده LCG استفاده شد. محیط شبیهسازی در این پژوهش محیط شبیهساز کلود سیم است. نتایج مقایسه نشاندهنده بهبود زمان انتظار و هزینه در رویکرد پیشنهادی است. نتایج نشان میدهد که به طور میانگین مدل پیشنهادی با کاهش 10 درصدی زمان انجام کار و افزایش استفاده از منابع به میزان 16 درصد بهتر عمل کرده است.
Mobile edge computing improves the experience of end users to achieve appropriate services and service quality. In this paper, the problem of improving resource allocation, when offloading tasks, based on mobile devices to edge servers in computing systems is investigated. Some tasks are uploaded and processed locally and some to edge servers. The main issue is that the offloaded tasks for virtual machines in computing networks are properly scheduled to minimize computing time, service cost, computing network waste, and the maximum connection of a task with the network. In this paper, a multi-objective hybrid algorithm of particle swarm and gray wolf was introduced to manage resource allocation and task scheduling to achieve an optimal result in edge computing networks. Local search in the particle swarm algorithm has good results in the problem, but it will cause the loss of global optima, so in this problem, in order to improve the model, the gray wolf algorithm was used as the main basis of the proposed algorithm, in the wolf algorithm Gray, due to the graphical approach to the problem, the set of global searches will reach the optimal solution, so by combining these functions, we tried to improve the operational conditions of the two algorithms for the desired goals of the problem. In order to create a network in this research, the network creation parameters in the basic article were used and the LCG data set was used in the simulation. The simulation environment in this research is the sim cloud environment. The comparison results show the improvement of waiting time and cost in the proposed approach. The results show that, on average, the proposed model has performed better by reducing the work time by 10% and increasing the use of resources by 16%.