ارائه یک شکل جدید از الگوهای باینری محلی به منظور طبقهبندی بافت تصویر
محورهای موضوعی : electrical and computer engineeringمرضیه پاکدل 1 , فرشاد فرشاد تاجریپور 2
1 - دانشگاه شیراز
2 - دانشگاه شیراز
چکیده مقاله :
طبقهبندی بافت تصویر نقش بسیار مهمی در بینایی ماشین و پردازش تصویر دارد. اولین و مهمترین مرحله در طبقهبندی بافت تصویر، استخراج ویژگی از تصویر میباشد. تاکنون روشهای بسیار زیادی برای استخراج ویژگی از تصاویر بافتی ارائه شدهاند اما از میان روشهای موجود الگوهای باینری محلی، در شکل اصلی و بهبودیافته خود، به دلیل سادگی در پیادهسازی و استخراج ویژگیهای مناسب با دقت طبقهبندی بالا، مورد توجه بسیاری از متخصصان این زمینه قرار گرفته است. شکل اصلی الگوهای باینری محلی هرچند از نظر پیادهسازی بسیار ساده است، اما زمانی که شعاع همسایگی افزایش یابد پیچیدگی محاسباتی بالایی دارد. شکل بهبودیافته الگوهای باینری محلی نیز به الگوهای همگن برچسبهای متمایز و به تمام الگوهای غیر همگن یک برچسب یکسان انتساب میدهد و این امر، طبقهبندی تصاویری که دارای درصد بالایی از الگوهای غیر همگن میباشند را با مشکل مواجه میسازد. در این مقاله، یک شکل جدید از الگوهای باینری محلی ارائه شده است که پیچیدگی محاسباتی آن نسبت به شکل اصلی الگوهای باینری محلی کمتر و دقت طبقهبندی آن نیز از شکل اصلی و بهبودیافته الگوهای باینری محلی بیشتر میباشد. روش ارائهشده در این مقاله نه تنها تصاویر با الگوهای همگن را به خوبی طبقهبندی میکند، بلکه در مورد تصاویری که دارای حجم بسیار بالایی از الگوهای غیر همگن میباشند نیز به خوبی عمل میکند. همچنین میتوان با تغییر در بازههای شدت روشنایی، محلی یا سراسریبودن ویژگیها را کنترل کرد. دقت طبقهبندی برای تمام تصاویر بافتی موجود در پایگاه داده Brodatz و Outex، کارایی روش ارائهشده را نشان میدهد.
Texture classification is one of the main steps in image processing and computer vision applications. Feature extraction is the first step of texture classification process which plays a main role. Many approaches have proposed to classify textures since now. Among them, Local Binary Patterns and Modified Local Binary Patterns, because of simplicity and classification accuracy, have emerged as one of the most popular ones. The Local Binary Patterns have simple implementation, but with increase in the radius of neighborhood, computational complexity will be increased. Modified Local Binary Patterns assigns various labels to uniform textures and a unique label to all non-uniform ones. In this respect, the modified local binary pattern can't classify non uniform textures as well as uniform ones. In this paper a new version of Local Binary Pattern is proposed that has less computational complexity than Local Binary Patterns and more classification accuracy than Modified version. The proposed approach classifies non uniform textures as well as uniform ones. Also with change in the length of central gray level intervals, locality and globally of the features can be controlled. Classification accuracy on two standard datasets, Brodatz and Outex, indicates the efficiency of the proposed approach.