شناسایی فعالیتهای انسانی مبتنی بر سنسورهای متحرک در اینترنت اشیا با استفاده از یادگیری عمیق
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه آزاد اسلامی واحد اردبیل،گروه مهندسی کامپیوتر
2 - دانشگاه آزاد اسلامی واحد اردبیل،گروه مهندسی کامپیوتر
کلید واژه: تشخیص فعالیت انسانی, یادگیری عمیق, یادگیری ماشین, شبکه عصبی عمیق, اینترنت اشیا,
چکیده مقاله :
کنترل محدودهها، اماکن و سنسورهای حرکتی در اینترنت اشیا نیازمند کنترل پیوسته و مستمر برای تشخیص فعالیتهای انسانی در شرایط مختلف است که این مهم، خود چالشی از جمله نیروی انسانی و خطای انسانی را نیز در بر دارد. کنترل همیشگی توسط انسان نیز بر سنسورهای حرکتی اینترنت اشیا غیر ممکن به نظر میرسد. اینترنت اشیا فراتر از برقراری یک ارتباط ساده بین دستگاهها و سیستمها میباشد. اطلاعات سنسورها و سیستمهای اینترنت اشیا به شرکتها کمک میکند تا دید بهتری نسبت به کارایی سیستم داشته باشند. در این پژوهش روشی مبتنی بر یادگیری عمیق و شبکه عصبی عمیق سیلایهای برای تشخیص فعالیتهای انسانی روی مجموعه داده تشخیص فعالیت دانشگاه فوردهام ارائه شده است. این مجموعه داده دارای بیش از یک میلیون سطر در شش کلاس برای تشخیص فعالیت در اینترنت اشیا است. بر اساس نتایج به دست آمده، مدل پیشنهادی ما در راستای تشخیص فعالیتهای انسانی در معیارهای ارزیابی مورد نظر کارایی 90 درصد و میزان خطای 2/2 درصد را داشت. نتایج به دست آمده نشان از عملکرد خوب و مناسب یادگیری عمیق در تشخیص فعالیت است.
Control of areas and locations and motion sensors in the Internet of Things requires continuous control to detect human activities in different situations, which is an important challenge, including manpower and human error. Permanent human control of IoT motion sensors also seems impossible. The IoT is more than just a simple connection between devices and systems. IoT information sensors and systems help companies get a better view of system performance. This study presents a method based on deep learning and a 30-layer DNN neural network for detecting human activity on the Fordham University Activity Diagnostic Data Set. The data set contains more than 1 million lines in six classes to detect IoT activity. The proposed model had almost 90% and an error rate of 0.22 in the evaluation criteria, which indicates the good performance of deep learning in activity recognition.